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Electromagnetic Coupling between Two
Half-Space Regions Separated by Two
Slot-Perforated Parallel
Conducting Screens

YEHUDA LEVIATAN, MEMBER, IEEE

Abstract —The problem of electromagnetic coupling between two half-
space regions separated by two slot-perforated parallel conducting planes is
investigated. A general moment solution for the problem is obtained. This
moment solution is then specialized to the case of narrow slots and to a TE
(transverse electric to the slot axis) excitation. Attention is given to the
power transmitted from one half-space to the other through the slots and to
its functional dependence on various problem parameters involved.

I. INTRODUCTION

HE PROBLEM OF coupling between regions via

apertures and slots in conducting walls has been the
subject of interest to researchers for many years. Problems
of this nature arise in many practical situations in EMP
studies and in the areas of electromagnetic compatability
and interference [1]. Another application field is mi-
croscopy, where superresolution based upon near-field
imaging is investigated [2], [3]. Once extended into the
visible frequency regime, this technique will give birth to
enormous practical applications. For example, this tech-
nique is likely to permit nondestructive imaging of surfaces
for use in biophysical research with a resolution compara-
ble to that of scanning electron microscopy. Finally, in the
area of microfabrication, the near-field behavior in the
vicinity of a photolithographic mask is of unquestionable
importance to engineers designing ever smaller devices.

In this paper attention is focused on the problem of
electromagnetic coupling between two half-space regions
separated by two slot-perforated parallel conducting
planes. We specialize our discussion to the case of electri-
cally narrow slots which can be of particular relevance to
the areas of microscopy and microfabrication. For exam-
ple, it would permit an assessment of the power transmis-
sion pattern that is expected to result when one moves a
narrow slot along an adjacent opaque test object carrying a
pattern of fine transparent lines. This problem clearly falls
into the general classification of problems with three re-
gions [4]-[8]. We will thus follow a formulstion procedure
similar to [8].
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The basic approach is to first use the equivalence princi-
ple [9, sec. 3-5] to divide the problem into three equivalent
situations. We close each slot with a perfect conductor and
attach magnetic current sheets to both sides of the covered
slot to provide for the tangential electric field originally
present in the slot region. Subsequently, we require the
continuity of the tangential magnetic field across each slot
and readily arrive at the functional equations for the
problem. These equations are in turn reduced to matrix
form via the method of moments, where the various con-
stituents are interpreted in terms of generalized network
parameters [10]. [11].

For narrow slots, the equivalent magnetic current in
each slot can be expanded, in general, in terms of the four
quasi-static distributions. While these distributions apply
specifically to the canonical problem of a narrow slot in a
plane screen, we assume that the form of the field in each
slot in our case remains almost the same as in the canoni-
cal problem. The amplitude and the phase of each slot
field, however, would not remain the same. In other words,
as far as the form of each slot field is concerned, we
neglected the electromagnetic interaction between the two
slotted screens, but for calculating its amplitude and phase,
we fully take these interactions into account.

Representative numerical simulations of transmitted
power patterns as functions of the various geometrical
parameters are given in the numerical results section.
Associated interpretations are suggested and major conclu-
sions are summarized thereafter.

II. FORMULATION OF THE PROBLEM

The geometry of the problem under study is shown in
Fig. 1, together with the coordinate system used. Here, we
consider the coupling between two half-space regions sep-
arated by two slotted parallel-plane conducting screens.
The left screen is in the z = 0 plane. The right screen is in
the z = d plane. The left-hand half-space (z < 0) is called
region a, the region between the screens is called region b.
The boundary condition at x =+ o0 and x = — o in re-
gion b is the radiation condition. The right-hand half-space
(z>d) is called region c¢. The slot connecting regions a
and b is called slot S;. The slot is infinite in the y
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Fig. 1. TE oblique incidence upon the slotted structure.

direction, or width 2w, in the x direction, and centered at
x =5, =0. The slot connecting regions » and ¢ is called
slot S,. The slot is infinite in the y direction of width 2w,
in the x direction, and centered at x =s,. Regions a, b,
and c are each filled with homogeneous media of constitu-
tive parameters (g, €,), (fi,, €,), and (g, €,.), respectively.
We are not considering dissipation and, therefore, each u
and each e is real. The excitation is assumed to be due to
known y-independent electric and magnetic current sources
in region a with exp(jwt) time dependence. Further, it is
assumed that throughout the entire frequency range con-
sidered, the width of each slot is much smaller than the
wavelength.

The equivalence principle is used to divide the original
problem into three equivalent situations, as shown in Figs.
2-4. We close the slots with perfect conductors and pro-
vide for the electric fields originally present in the slots S;
and S, by attaching postulated magnetic current sheets
— M, and M, just to the left and right of S;, respectively,
and — M, and M, just to the left and right of S,
respectively. Here,

M,=E, X} (1)
M,=E, X% (2)

where % is a unit vector in the z direction and E, and E,
are the respective electric fields in S; and S, in the
original problem. The electromagnetic field in region a in
Fig. 2 is the sum of the electromagnetic fields of the
incident wave (E, H*) calculated with slot S, shorted
and the electromagnetic field (E“(— M,), H*(— M,)) due
to — M, radiating in region a with slot S; shorted. The
electromagnetic field in region b in Fig. 3 is the elec-
tromagnetic field (E®(M,)+ E*(— M,), H*(M}) +
H"(— M,)) due to M, and — M, radiating in region b
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Fig. 2. Equivalence for region a.
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Fig. 3. Equivalence for region b.

with both slots S; and S, shorted. The electromagnetic
field in region ¢ in Fig. 4 is the electromagnetic field
(EY(M,), H(M,)) due to M, radiating in region ¢ with
slot S, shorted. These electromagnetic fields simulate the
respective fields in regions a, b, and ¢ in the original
situation shown in Fig, 1. ’

The use of — M, in region a and M, in region b
ensures continuity of the tangential components of the
electric field across the slot S;. The use of — M, in region
b and M, in region ¢ ensures continuity of the tangential
components of the electric field across the slot §,. Con-
tinuity of the tangential components of H across each slot
leads to the operator equations for the problem. The
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Fig. 4. Equvalence for region c.

procedure is described in detail in [8]. The result is

_Hta(Ml)_th(M1)+th(M2) = _Htsc over §;
(3)

th(Ml)_th(MZ)_Htc(M2) =0 over Sl
(4)

where the subscript ¢ denotes components tangential to the
respective slot region. Note that in (3) and (4) we have
used the linearity of the operator to replace H*(— M,) and
H'(— M,) by — H*(M;) and — H?(M,). respectively.
Equations (3) and (4) should be first solved for the equiv-
alent magnetic currents M; and M,. and then the fields in
each region can be computed from these equivalent cur-
rents.

If (3) and (4) were satisfied exactly, we would have the
true solution. To obtain an approximate solution, we fol-
low a moment procedure similar to that summarized in [§],
specializing it to electrically narrow slots [12]. First, the
two magnetic currents are expanded as

4
M,= ) V.M
n=1

where the V,, are scalar coefficients to be determined and
M, are vector functions defined in slot S, as follows:

g=1,2 (5)

M, =f(x)P (6)
Ma= G )5 )

AOE (3)
Moo= (x=5,)f,(x) ©)

Here,
() =wi=(x-s,)%, (10)

where s p is the x coordinate of the center of slot Sq‘and x
and P are unit vectors in the x and y directions, respec-

g=1,2

tively. Recall that for convenience we have chosen 5,=0.
Next, inner products for each slot are defined as

s, + w,
(A,B>q=/q "A-Bdx,

S¢ T W

qg=1,2 (11)
where the integration is along the x direction in slot S,
Finally, sets of testing functions { W, } are defined in each
S, g=1,2. With these definitions at hand, (5) is sub-
stituted into (3) and (4), which in turn are tested, respec-
tively, with each element of { W}, } and with each element
of {W,,} using (11).
The result is

(sl + Vi + W] 7 =T (12)
[+ (YAl v, + 1] =0 (13)
where
[¥2,] = [~ (W,,.. B (M,,)),] (14)
(7] = (W BAOL,)),]. g2r (15)
I'= [~ (W B (16)
Vo= [Vl (17)

with ¢=1,2 and r=1,2. The matrices [Y/] are called
generalized admittances, the vector It is called generalized
source current, and the vectors Vq are called generalized
voltages. A solution of the problem is obtained by solving
matrix equations (12) and (13) for 171 and V,, which
determine the equivalent magnetic currents M, and M, by
(5). If a Galerkin solution is used, that is, if { W}, } = (M, }
and {W,,} = {M,,}, it then follows that

[Y2] = [~ (M, H? (M,,),] (18)
[ ] [< qm’th(Mrn)>]’ q+r (19)
I'=[—(My,, B, (20)

III. TE ExcIrration

We here specialize our solution to the case of a TE
(transverse electric to the slot axis) illumination. Consider
a plane wave incident upon the structure at some angle 6.
in the x—z plane measured from the negative z axis, as
shown in Fig. 1. The impressed magnetic field measured in
region a in the presence of a complete conducting plane
over the z = 0 plane is

H**=2Hycos(k,zcos 8, )e/ksn?

=5 (21)
where H, is the amplitude of the incident magnetic field,
and k is the wavenumber. The subscript with & associates
the wavenumber with its respective region. In view of the
excitation, our approximate solution will be basically a
one-term moment solution. Specifically, each M » 4=12,
is expressed as

mnc

Mq = Vqqul (22)

where M is given in (6). Using a Galerkin procedure, the
general network equations (12) and (13) reduce to the
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scalar equations
YlallVll + YlbllVll + Y11721V21 =1 (23)
YZbllVll + Yzblen + Yzcz1 Vn=0. (24)

Here, Ij is the m =1 element of I’ and Y2! denotes the
(m,n)=(1,1) elements of [Y” ] Further, thanks to re-
ciprocity, we find that Y2} = Y2!; hence (23) and (24) are
equations which characterize the behavior of the equiv-
alent circuit illustrated in Fig. 5.

We next proceed to evaluate the various generalized
network parameters appearing in (23) and (24). Substitu-
tion of M,; from (6) and H* from (21) into (20) and
utilizing the fact that H is virtually constant in the
electrically narrow region of slot S}, we obtain

IL=-27H,. (25)
Note that under our assumptions I; is independent of 6.

Further, following the derivations outlined in the Appen-
dix, the generalized admittances are given by

e o kga* k. { vk W, o6
1= 2, J 1 0g 4 ) (26)
7% 2 kg Yk ,w,
1n= —Jj—lo
2"lb M 4

W f“ =

”Ib,,—l —wY = w 2 _x? \/w —x?

-Héz)(kb\/(2nd)2+ (x— x’)2) dx’ dx

kg? =
+ Y, HP(2k,nd) (27)
M n=N+1
k,
Y2111=Y1bzl= -
P
wy Sy + wy 1 1
YA 7 e
n w wi~(x'—s5,)* ywi—x?

(2)( ,,\/[(211 D)d]*+(x-x)° )dx dx

ka? &
-—=— ¥ HP(ky[@n-1)d]+ s}
s n=N,+1
(28)
ka?  kyr vk, w
yh - b_._b_lo( b2)
22 271;, ]"lb g 4
/W2 fwz 1
nb n=1""m —WZ\/W —x'2 \/W —x?
@) 2 W 2 ’
CHPV kW (2nd) +(x—x')" | dx’dx
kg’ 2
+—2— ¥ HP(2k,nd) (29)
M n=N+1
ka* kg Yk w,
Y= o — . 30
e G- 5 (30)
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Fig. 5. Equivalent circuit for the coupling between the slotted screens.

The notations of (26)—(30) are also introduced in the
Appendix. This completes the evaluation of the various
generalized network parameters appearing in (23) and (24).
A parameter of interest is the transfer admittance
I vhYR - (v + Y )(YE + Y5)

Y,==—=
2y Y

(31)

which allows one to calculate the strength of M, =V,,M,,
given the excitation I of (25). Another measurement of
considerable interest is the power transmitted through the
two slots to region ¢. In terms of the above generalized
network parameters, this transmitted power is equal to the
power dissipated in Y53 of the equivalent circuit of Fig. 5,
that is,

(32)

tra.ns |V21 | G
In terms of the transfer admittance, this becomes
Il
P, G} 33
trans le ( )

where I} is given by (25), Y, by (31), and G&
with Y5} given by (30).

The power per unit length is the y direction incident
upon the slot S; when the incidence is normal is

=Re(Y5)),

2
Pl’:lc_naIH()l 2W1 (34)

where the superscript n indicates that the power defined
here is for normal incidence. We can now define the
transmission coefficient T of the system to be the power
transmitted through the slots to region ¢ normalized with
respect to the incident power (34), that is,

trans

Pn

mnc

T=

(35)

The transmission coefficient is a suitable measure for the
power coupling mechanism between regions a and c. It
depends on the slot widths, the spacing between the screens,
the transverse shift between the slots, and the media filling
the various regions. This definition of 7' has been used in
[6] and [8]. It should be distinguished from another possi-
ble transmission measure, defined as the power trans-
mitted to region ¢ normalized with respect to the actual
power transmitted by slot ;. This latter quantity would
be, of course, smaller than or equal to 1. T of (35),
however, can be larger than 1. In the following section,
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representative variations of T as functions of various geo-
metrical parameters will be discussed.

IV. NUMERICAL RESULTS

Computer programs have been prepared to carry out the
analysis of the preceding section. The programs compute
the transmission from region a to region ¢ through the
two slotted scréens for various slot widths, for various
spacings between the screens, and for various transverse
shiftings between the slots. All the calculations were done
using an IBM 3081 computer. Attention should be recalled
to the summations in (27)—(29). Unfortunately, these sum-
mations converge slowly, particularly when the spacing
between the screens is small, thereby taxing the computing
system. Nevertheless, the overall computation time was
reasonable. In this section, representative numerical results
of transmitted power patterns as function of geometrical
parameters are exhibited, and associated interpretations
are suggested. It should also be added that the geometry in
Fig. 1 is only a representative one. The slot widths can in
some cases be larger while in other cases smaller compared
with the screen spacing.

Figs. 6 and 7 show plots of transmission coefficient T’
versus s, /A for various screen spacings d. Here, w; = 0.05A
and w, = 0.1\, and we take the media in all three regions
to be free space. A is the wavelength in free space. The
excitation is due to a plane wave transverse electric to the
left slot axis obliquely incident upon the left screen. Fig. 6
depicts the variation in T in the range —0.3A <5, <0.3A.
Fig. 7 is a three-dimensional picture of the data displayed
in Fig. 6. An examination of these plots brings out a
number of interesting observations. For small distances
between the screens, namely, out to about half the first slot
width, a distance to which the radiation emanating through
the first slot is collimated to the slot size rather than the
wavelength [13], a scan of slot S, in the x direction yields
an approximate scan trace of S, in the power transmission
coefficient. The smooth edges are of the order of the width
of the illuminating slot S,. In other words, as long as the
scan in the x direction is less than w, — w,, namely,
|s,] < 0.05A, the well-collimated radiation from slot §;
goes almost unaffected through S,. As |s,| increases from
0.05A, there is a monotonic decline in power transmission,
since slot S, begins to block this collimated radiation. On
the other hand, for larger distances between the screens,
the radiation from S, is no longer confined to a region
comparable with the slot width; consequently, a scan of
slot S, in the x direction does not yield a well-defined
trace of S,.

Fig. 8 shows a plot of transmission coefficient 7' at
d = 0.04\ and d = 0.1\ versus s, /A for a wide range of s,
in the x direction, namely, —2A <s, <2A. Here, w, =
0.05A and w, = 0.1\. Note that T becomes a maximum at
transverse shifts that approach multiples of A /2 in ad-
dition to its maximum at zero offset. This feature seems to
cast a severe drawback for scanning ultramicroscopy and
photolithography. Fortunately, this problem can be easily
overcome by utilizing a multiple-frequency source, thereby
significantly enhancing the desired zero offset resonance

0.90-1
0.75 /
7\ \
0.60 7/’“\
B+ 0.454
0.30+
0,15
d4/2=0.02 \
().0'"l T T — T T T
-03 -0.2 -0 00 0.1 0.2 0.3
sa/ A
Fig. 6. Plots of transmission coefficient T' versus s, /A for different

spacings between screens.

Fig 7.

Three-dimensional picture of the data of Fig. 6



LEVIATAN: ELECTROMAGNETIC COUPLING BETWEEN HALF-SPACE REGIONS

2.0
1.6
d/x=0.04
124
e
0.8 h
'l [ )
h H A m '.
i\ I LT L A
[} 1 [AR] []
[} \ (3R H B !
\ 4y 1y 1Y !
i Hy HH Y
044 |\ § 1] !
\ 1 y
L J ) [l)
0.0- T T T T
-2 =1 o] 1 2
Sa2/\
Fig. 8. Transmission coefficient T versus s, /A at d =0.04A and d =
0.1A.
0.901
0.75—\
0.60
B+ 0.45
0.30
0.15J
0.0 T T —T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
d/x

Fig 9. Transmission coefficient T versus d /A at zero offset.

while retaining the other resonances virtually the same.
Observe also that, as one can expect, the resonances be-
come broader and decrease in intensity as d gets larger.
Finally, Fig. 9 depicts a plot of the transmission coeffi-
cient T as a function of the spacing between the screens
for the zero offset case (s,=0). Note that resonances
occur at spacings which approach multiples of A /2. This
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phenomenon is not surprising since it has already been
observed in similar but nevertheless different situations.
These analogous cases are transmission through aperture-
cavity-aperture system [8] and transmission through vari-
ous slots in thick conducting screens [6]. These resonances
decrease gradually in intensity, of course, with increasing
spacing between the screens.

V. DIscuUssioN

A four-term moment solution for the general problem of
electromagnetic coupling between two half-space regions
separated by two narrow-slot perforated parallel conduct-
ing planes has been formulated. The solution. reduces
subsequently to a one-term one for the special case of TE
excitation, where the coupling mechanism is described by
means of a simple equivalent circuit model. A measure-
ment of the coupling is given in terms of a transmission
coefficient which -is defined as the power transmitted
through the slots to region ¢ normalized to the power
incident upon slot ;.

The formulation is general and can be employed in a
variety of situations involving coupling through slotted
screens. Our numerical examples are also general but, in a
sense, more closely related to the areas of microscopy and
microfabrication. It has been shown that for small dis-
tances between the screens, namely, out to about half the
first slot width, a scan of the second slot in the transverse
direction yields an approximated scan trace of this slot in
the power transmission coefficient.

Also, scanning further out along the transverse direction
results in a series of power transmission resonances which
occur at transverse shifts that approach multiples of A /2.
We would like to stress again that this behavior, which at
first sight seems to cast a severe drawback for scanning
ultramicroscopy and photolithography, can be easily over-
come by utilizing a multiple-frequency source, thereby
significantly enhancing the desired zero offset resonance
while retaining the other resonances virtually the same.
Furthermore, it should be emphasized that for superresolu-
tion fluorescence near-field scanning microscopy, this
problem does not exist at all due to the inherently wide
spectral content of the fluorescence.

Finally, spacing the screen further apart also leads to a
multiple resonance pattern for the zero offset case. These
resonances also occur at resonance spacings which ap-
proach, as expected, multiples of A /2. This last phenome-
non is analogous to the phenomenon of transmission
through aperture-cavity-aperture system [8] and to that of
transmission through narrow slots in thick conducting
screens [6], where periodic resonance patterns have already
been observed.

APPENDIX

In this appendix, we will evaluate the various gener-
alized admittances appearing in (23) and (24).
First, we evaluate Y{ given by

wy .
Ylall: _<M113Hra(M11)>1: "fé M11'qu(M11) dx’.
(A1)
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Here, the integration is along the x direction in slot S; and
M, is given by

5 inS,. (A2)

Also in (A1), H*(M,;) is the magnetic field due to current
M., radiating in region a with slot S; closed. At observa-
tion point (x, z) in region a, this field is due to 2M;
radiating in free space That is

wy 1
2, /— " lez —x?
Héz)(k‘l\/z2 +(x— x’)z) dx'p (A3)

where H{? is the Hankel function of the second kind of
zero order. In the slot S; region, the Hankel function can
be replaced by its small argument approximation

HP (k)22 + (x = x)°)

Ha(Mu) =

z=0
x, X €[—wy,w]

2 kylx—x'
zl—j—log———l———|
T 2

where log denotes natural logarithm and y =1.7810724.
Substituting (A4) into (A3), employing the identities

(A4)

w 1
/l T dx'=m (A5)
w 1 vk|x — x| akw
f i on log 5 dx’ = log| — 2 (A6)
—wyw®—x

and retaining only the largest real and imaginary terms,
one readily obtains

Hu(Mn) ==

k, vk w
' ( . ) 5 ins,.

T
—p+j—1o
217y ]n 8l 74

(A7)

Note that H“(M,,) is constant in the slot §; region.
Finally, we substitute (A7) for H?(M,) in (Al) and
readily arrive at

k ar k w
“ 1og(y a 1). (A8)

4

a a

Next, we evaluate Y/} given by

w
Y1’11 == <M11~ sz(M11)>1 = _f M11'sz(M11) dx’
_—

(A9)

where the integration is along the x direction in slot S
and M, is given by (A2). Also in (A9), H?(M,,) is the
magnetic field due to the current M,; radiating in region b
with both slots S; and S, closed. At observation point
(x, z) in region b, this field is the field due to 2M;; and its

2d-spaced images. That is

ﬁg

2nb n=-—owo

fW1 1
—w ¢w12 _ xr2

HP k(2 =2nd )+ (x—x') ) dx'. (A10)

Hb(Mn) -

In the slot S, region, the following approximations for the
Hankel function are considered. For n=0, H{ is re-
placed by its small argument approximation

HP (kpz? +(x - %))

z=0
x,x'e[~

wi, wi ]

2 kyylx —x'|

=1— j—log (A11)
T 2
For n?> (10w, /d)?, we have (2nd)? > |x — x|* and thus
we can set
H(2)( b (z——2nd)2+(x~x’)2) 2=0

x,xe[—wy,w]

~ HO(Rk,nd)). (Al12)

Substituting (Al1) and (Al2) into (A10) and employing
identities (AS) and (A6), we obtain
ky — vkyw §

k,m
Hb(Mn) = —2——y+j—10g 2
My

L
—-—w W]_z—xl2

-Héz)(kb\/(?nd)z+ (x— x’)z) dx’

nb n=1

ko &2 .
——— )Y HPQky;d)p in S (Al13)
Mo n=mN,+1
where N, is the largest integer n satisfying n2 < (10w/d)?,

with w being max(w;, w,).
Finally, we substitute (A13) for H?(M;;) in (A9) and
readily arrive at

Wl Wy H(Z)
771; n—1f—wl‘[‘wl\/72—x'2 1/w —x? 0
. (kb\/_(2nd)2+ (x— x’)2 ) dx'dx
2 ©
ko Y HP(2k,nd). (A14)

M n=N+1
We now proceed to evaluate Y3 given by

Y1bz (M, H, (M21)>1 f M11H(M21)dx (A15)

—w

where the integration is along the x direction in slot S,
and M, is given by (A2). Also in (A15) H?(M,,) is the
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magnetic field due to the current

1

M, =
—(x - 52)2

in S, (A16)

radiating in region b with both slots S; and §, closed. At
observation point (x, z) in region b, this field is the field
due to 2M,, and its 2d-spaced images. That is,

Sy T Wy 1

_(x,_s2)2

k, &
Hb(le) = E’ﬂ— Z

bn=-~0 527 WM

HP (k) [2=@n=1)d]+(x—x') ) ax's. (A17)

In the slot S; region, the following approximation for the
Hankel function is considered. For (2n —1)? > (10w, /d )2,
we set

z=0
x €[~ wy,w]

HP (ke [2 = (20 = 1)d]*+ (x - x)’)

X E s, —wy, 8, +w,]

~ HO(kyf[2n—1) d)*+s2). (A18)

Substituting (A18) into (A17) and employing (AS), we find

Sy + Wy 1

_(x,—sz)2

ky, %
Hb(M21) == ?1— Z

b p=1"8"

<2>( klz - (2n - 1)d]2+(x—x’)2)dx’ﬁ

kym

> HP(k[2n-1)dT+s2)5

My n=N,+1
in S, (A19)
where N, is the largest integer n satisfying (2n —1)? <

(10w, /d)2. Finally, we substitute (A19) for H?(M,,) in
(A15) and readily arrive at

bl _
YIZ -

kh N2 wy 53+ wy 1 1
[

2
My n=1 \/sz—(x’—sz) \/wf—xl

—w Ve, —wy

<2>(k\/ [(2n—-1 d]2+(xnx’)2)dx’dx

2
k,m

5 HP (k| [(2n=1)d )+ 53 ).

N n- Ny +1
(A20)
Furthermore, thanks to reciprocity,
(A21)

Y7b11 Ybl

The remaining elements Yy} and
way analogous to that used to evaluate Y2
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Y5 can be evaluated in a

and Y{,

respectively. The result is

—WZ

Wy pwy 1
Z/ / 2 x'? \/w

(2)( b\/(2nd) +(x—x) )dx dx

kbﬂ'z

Z Héz)(Zkb"d)

(A22)
Mo n=nN+1

cl
Y22 -

ka? k. /ykcw
i——1 g(————z) (A23)

27, -/ N, 4
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