
44 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 1, JANUARY 1988

Electromagnetic Coupling between Two
Half-Space Regions Separated by Two

Slot-Perforated Parallel
Conducting Screens
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Abstract —The problem of electromagnetic coupling betweeu two half-

space regions separated by two slot-perforated paraflel conducting planes is

iswestigated. A general moment solution for the problem is obtained. This

moment solution is then speciafiied to the case of narrow slots and to a TX

(transverse electric to the slot axis) excitation. Attention is given to the
power transmitted from oue half-space to the other through the slots and to

its functional dependence on various problem parameters involved.

I. INTRODUCTION

T HE PROBLEM OF coupling between regions via

apertures and slots in conducting walls has been the

subject of interest to researchers for many years. Problems

of this nature arise in many practical situations in EMP

studies and in the areas of electromagnetic comparability

and interference [1]. Another application field is mi-

croscopy, where superresolution based upon near-field

imaging is investigated [2], [3]. Once extended into the

visible frequency regime, this technique will give birth to

enormous practical applications. For example, this tech-

nique is likely to permit nondestructive imaging of surfaces

for use in biophysical research with a resolution compara-

ble to that of scanning electron microscopy. Finally, in the

area of microfabrication, the near-field behavior in the

vicinity of a photolithographic mask is of unquestionable

importance to engineers designing ever smaller devices.

In this paper attention is focused cm the problem of

electromagnetic coupling between two half-space regions

separated by two slot-perforated parallel conducting

planes. We specialize our discussion to the case of electri-

cally narrow slots which can be of particular relevance to

the areas of microscopy and microfabrication, For exam-

ple, it would permit an assessment of the power transmis-

sion pattern that is expected to result when one moves a
narrow slot along an adjacent opaque test object carrying a

pattern of fine transparent lines. This problem clearly falls

into the general classification of problems with three re-

gions [4]–[8]. We will thus follow a formuk tion procedure

similar to [8].
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The basic approach is to first use the equivalence princi-

ple [9, sec. 3-5] to divide the problem into three equivalent

situations. We close each slot with a perfect conductor and

attach magnetic current sheets to both sides of the covered

slot to provide for the tangential electric field originally

present in the slot region. Subsequently, we require the

continuity of the tangential magnetic field across each slot

and readily arrive at the functional equations for the

problem. These equations are in turn reduced to matrix

form via the method of moments, where the various con-

stituents are interpreted in terms of generalized network

parameters [10]. [11].

For narrow slots, the equivalent magnetic current in

each slot can be expanded, in general, in terms of the four

quasi-static distributions. While these distributions apply

specifically to the canonical problem of a narrow slot in a

plane screen, we assume that the form of the field in each

slot in our case remains almost the same as in the canoni-

cal problem. The amplitude and the phase of each slot

field, however, would not remain the same. In other words,

as far as the form of each slot field is concerned, we

neglected the electromagnetic interaction between the two

slotted screens, but for calculating its amplitude and phase,

we fully take these interactions into account.

Representative numerical simulations of transmitted

power patterns as functions of the various geometrical

parameters are given in the numerical results section.

Associated interpretations are suggested and major conclu-

sions are summarized thereafter.

II. FORMULATION OF THE PROBLEM

The geometry of the problem under study is shown in

Fig. 1, together with the coordinate system used. Here, we

consider the coupling between two half-space regions sep-

arated by two slotted parallel-plane conducting screens.

The left screen is in the z = O plane. The right screen is in

the z = d plane. The left-hand half-space (z <O) is called

region a, the region between the screens is called region b.

The boundary condition at x = + m and x = – m in re-

gion b is the radiation condition. The right-hand half-space

(z> d) is called region c. The slot connecting regions a

and b is called slot S1. The slot is infinite in the y
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Fig. 1. TE oblique incidence upon the slotted structure.

direction, or width 2W1 in the x direction, and centered at

x = S1= O. The slot connecting regions b and c is called

slot S2. The slot is infinite in the y direction of width 2 W2

in the x direction, and centered at x = Sz. Regions a, b,

and c are each filled with homogeneous media of constitu-

tive parameters (pa, c.), (p~, c~), and (p., cc), respectively.

We are not considering dissipation and, therefore, each p

and each c is real. The excitation is assumed to be due to

known y-independent electric and magnetic current sources

in region a with exp ( jot) time dependence. Further, it is

assumed that throughout the entire frequency range con-

sidered, the width of each slot is much smaller than the

wavelength.

The equivalence principle is used to divide the original

problem into three equivalent situations, as shown in Figs.

2–4. We close the slots with perfect conductors and pro-

vide for the electric fields originally present in the slots S1

and S2 by attaching postulated magnetic current sheets

– Ml and Ml just to the left and right of S1, respectively,

and – A42 and Mz just to the left and right of S2,

respectively. Here,

M1=EIxt (1)

M2=E2X? (2)

where 2 is a unit vector in the z direction and El and &

are the respective electric fields in S1 and S2 in the

original problem. The electromagnetic field in region a in

Fig. 2 is the sum of the electromagnetic fields of the
incident wave (E “, Hsc) calculated with slot S1 shorted

and the electromagnetic field (Ea( – MJ, H“( – MJ) due

to – Ml radiating in region a with slot S1 shorted. The

electromagnetic field in region b in Fig. 3 is the elec-

tromagnetic field (Eb(M1) + Eb(– M2), Hb(M1) +

Hb( – M2)) due to Ml and – M2 radiating in region b

zmo FIELD
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Fig. 2. Equwalencefor region a.
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Fig. 3, Equivalencefor region h

FIELD

with both slots S1 and S2 shorted. The electromagnetic

field in region c in Fig. 4 is the electromagnetic field

(E C(M2), HC(M2)) due to M2 radiating in region c with

slot S2 shorted. These electromagnetic fields simulate the

respective fields in regions a, b, and c in the original

situation shown in Fig. 1.

The use of – Ml in” region a and Ml, in region b

ensures continuity of the tangential components of the
electric field across the slot S1. The use of — iW2 in region

b and M2 in region c ensures continuity of the tangential

components of the electric field across the slot S2. Con-

tinuit y of the tangential components of H across each slot

leads to the operator equations for the problem. The
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procedure is described in detail in [8]. The result is

– H:(Ml)– H:(MJ+H$(M2) = –Hy over 5’1

(3)

Hp(Ml)– H:(M*)– H:(M2) = o over S1

(4)

where the subscript t denotes components tangential to the

respective slot region. Note that in (3) and (4) we have

used the linearity of the operator to replace H;( – Ml ) and

H;( – M2 ) by – H;(Ml) and – H,b(M2), respectively.

Equations (3) and (4) should be first solved for the equiv-

alent magnetic currents Ml and M2. and then the fields in

each region can be computed from these equivalent cur-

rents.

If (3) and (4) were satisfied exactly, we would have the

true solution. To obtain an approximate solution, we fol-

low a moment procedure similar to that summarized in [8],

specializing it to electrically narrow slots [12]. First, the

two magnetic currents are expanded as

4

~q = ~ vq#qn > q=l,2 (5)
~=1

where the F’& are scalar coefficients to be determined and
itf~~ are vector functions defined in slot S~ as follows:

Mql=f;’(x)j
\

(6)

Mq2=(x–sq)&l(x)j 1 (7)

Mq3=fq(x)i
q=l$2.

(8)

M,, = (X- Sq)fq(X)f j (9)

Here,

fq(x)=&-(x-sq )2, q=l,2 (lo)

where ,s~ is the x coordinate of the center of slot S~ and 2

and j are unit vectors in the x and y directions, respec-

tively. Recall that for convenience we have chosen SI = O.

Next, inner products for each slot are defined as

(A, B)q=Js:!4.Bdx, q=l,2 (11)
qll

where the integration is along the x direction in slot S~.

Finally, sets of testing functions { Wqn} are defined in each

S~, q =1,2. With these definitions at hand, (5) is sub-

stituted into (3) and (4), which in turn are tested, respec-

tively, with each element of { W1. } and with each

of { Wzn } using (11).

The result is

[YfJ~+[Y~]~+[Y/2]~=F

[YJ]~+[YJ]~ +[Y;2]~=d

where

[Y;q] = [-(wqm$~:(~qn))q]

[y~] = [( W,~@’(%)),], q+r

fi= [-(wbnKsc)J

7q= [Vqn]

element

(12)

(13)

(14)

(15)

(16)

(1?)

with q =1,2 and r =1,2. The ma~ices [Y:] are called

generalized admittances, the vecto~ 1’ is called generalized

source current, and the vectors V~ are called generalized

voltages. A solution of the problem is obtained by solving

matrix equations (12) and (13) for ~1 and ~~, which

determine the equivalent magnetic currents Ml and M2 by

(5). If a Galerkin solution is used, that is, if { W,n } = {Mln }

and { W’,t } = { M2n }, it then follows that

[Y:q] = [-(Mqml~?(Mqn))q] (18)

[y:] = [(M?m7@l%Jq]> q+~ (19)

~= [–(M1m, H:)l]. (20)

III. TE EXCITATION

We here specialize our solution to the case of a TE

(transverse electric to the slot axis) illumination. Consider

a plane wave incident upon the structure at some angle Oi~C

in the x – z plane measured from the negative z axis, as

shown in Fig. 1. The impressed magnetic field measured in

region a in the presence of a complete conducting plane

over the z = O plane is

H ‘c = 2HOCOS( k~z cos O,nC ) eJk~x ‘ino.cj (21)

where HO is the amplitude of the incident magnetic field,

and k is the wavenumber. The subscript with k associates

the wavenumber with its respective region. In view of the

excitation, our approximate solution will be basically a

one-term moment solution. Specifically, each M~, q =1,2,

is expressed as

Mq = VqlMql (22)

where M,,l is given in (6). Using a Galerkin procedure, the

general net work equations (12) and (13) reduce to the
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scalar equations

Y:;V1l + Y:%’ll + Yflv21 = 1: (23)

Yglvll + Y~lv21 + Y;;V21 = o. (24)

Here, Ii is the m =1 element of ~ and Y:l denotes the

(m, n)= (1, 1) elements of [Y:]. Further, thanks to re-

ciprocity, we find that Y&l= Y~l; hence (23) and (24) are

equations which characterize the behavior of the equiv-

alent circuit illustrated in Fig. 5.

We next proceed to evaluate the various generalized

network parameters appearing in (23) and (24). Substitu-

tion of Alll from (6) and Hr from (21) into (20) and

utilizing the fact that H: is virtually constant in the

electrically narrow region of slot S1, we obtain

1;= –27rHo. (25)

Note that under our assumptions l; is independent of f3inC.

Further, following the derivations outlined in the Appen-

dix, the generalized admittances are given by

kav2 ka~

()

~ka wl
y:;=—. -

J
2% n.

log ~

kb~2 k~~

()

Ykbwl
y~ _ “—log ~

2qb
J

~b

+ : & J:WIJ:W, /+ /+

(~
.H&) k~ (2nd )2+ (X – X’)2) dX’dX

+ W E H$)(2kbnd)
~b n= Nl+l

y$=y#=_&

qb

(26)

(27)

(~.Hj2) kb [(2n –1) d]2+(x–x’)2) dx’dx

k~v2 cc

(
- — ~ H~2) kb/[(2n-l)d]2+S~

~b n= N2+l

(28)

(~.Hj2) kb (2nd )2+ (.x – X’)2 ) dx’dx

+ ~ ~ HJ2)(2kbnd)
~b n= N,+l

kc~2 kcv

()

ykcw2
y;; = —– “—log ~ .

2qc J qc

(29)

(30)
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Fig. 5. Equivalent circuit for the coupling between the slotted screens.

The notations of (26)–(30) are also introduced in the

Appendix. This completes the evaluation of the various

generalized network parameters appearing in (23) and (24).

A parameter of interest is the transfer admittance

which allows one to calculate the strength of M2 = V21M21

given the excitation 1; of (25). Another measurement of

considerable interest is the power transmitted through the

two slots to region c. In terms. of the above generalized

network parameters, this transmitted power is equal to the

power dissipated in Y~~ of the equivalent circuit of Fig. 5,

that is,

,,m,=IV2112G;:.P (32) ‘

In terms of the transfer admittance, this becomes

I; 2
P tram = — G~~

Y12

(33)

where 1( is given by (25), Y12 by (31), and G~~ = Re(Yf~),

with Y~~ given by (30).

The power per unit length is the y direction incident

upon the slot S1 when the incidence is normal is

p:. = val Ho 122w1 (34)

where the superscript n indicates ‘that the power defined

here is for normal incidence. We can now define the

transmission coefficient T of the system to be the power

transmitted through the slots to region c normalized with

respect to the incident power (34), that is,

(35)

The transmission coefficient is a suitable measure for the

power coupling mechanism between regions a and c. It

depends on the slot widths, the spacing between the screens,

the transverse shift between the slots, and the media filling

the various regions. This definition of T has been used in
[6] and [8]. It should be distinguished from another possi~

ble transmission measure, defined as the power trans-

mitted to region c normalized with respect to the actual

power transmitted by slot S1. This latter quantity would

be, of course, smaller than or equal to 1. T of (35),

however, can be larger than 1. In the following section,
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representative variations of T as functions of various geo-

metrical parameters will be discussed.

IV. NUMERICAL RESULTS

Computer programs have been prepared to carry out the

analysis of the preceding section. The programs compute

the transmission from region a to region c through the

two slotted screens for various slot widths, for various

spacings between the screens, and for various transverse

shiftings between the slots. All the calculations were done

using an IBM 3081 computer. Attention should be recalled

to the summations in (27)–(29). Unfortunately, these sum-

mations converge slowly, particularly when the spacing

between the screens is small, thereby taxing the computing

system. Nevertheless, the overall computation time was

reasonable. In this section, representative numerical results

of transmitted power patterns as function of geometrical

parameters are exhibited, and associated interpretations

are suggested. It should also be added that the geometry in

Fig. 1 is only a representative one. The slot widths can in

some cases be larger while in other cases smaller compared

with the screen spacing.

Figs. 6 and 7 show plots of transmission coefficient T

versus Sz/ A for various screen spacings d. Here, WI= 0.05A

and N+ = O.lA, and we take the media in all three regions

to be free space. A is the wavelength in free space. The

excitation is due to a plane wave transverse electric to the

left slot axis obliquely incident upon the left screen. Fig. 6

depicts the variation in T in the range – 0.3A< Sz < 0.3~.

Fig. 7 is a three-dimensional picture of the data displayed

in Fig. 6. An examination of these plots brings out a

number of interesting observations. For small distances

between the screens, namely, out to about half the first slot

width, a distance to which the radiation emanating through

the first slot is collimated to the slot size rather than the

wavelength [13], a scan of slot S2 in the x direction yields

an approximate scan trace of S2 in the power transmission

coefficient. The smooth edges are of the order of the width

of the illuminating slot S1. In other words, as long as the

scan in the x direction is less than W2— Wl, namely,

Iszl < 0.05A, the well-collimated radiation from slot S,

goes almost unaffected through S2. As Iszl increases from

0.05A, there is a monotonic decline in power transmission,

since slot S2 begins to block this collimated radiation. On

the other hand, for larger distances between the screens,

the radiation from S1 is no longer confined to a region
comparable with the slot width; consequently, a scan of

slot S2 in the x direction does not yield a well-defined

trace of S2.

Fig. 8 shows a plot of transmission coefficient T at

d = 0.04A and d = O.lA versus s2/A for a wide range of Sz

in the x direction, namely, – 2A < Sz < 2A. Here, WI =

0.05A and W2= O.IA. Note that T becomes a maximum at

transverse shifts that approach multiples of A/2 in ad-

dition to its maximum at zero offset. This feature seems to

cast a severe drawback for scanning ultramicroscope and

photolithography. Fortunately, this problem can be easily

overcome by utilizing a multiple-frequency source, thereby

significantly enhancing the desired zero offset resonance

0.90

1

s# A

Fig. 6, Plots of transmission coefficient T versus S2/A for different
spacingsbetweenscreens.

00%= / Y---u ,V..

- x“””
-0.3

Fig 7. Three-dimensional picture of the data of Fig. 6
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while retaining the other resonances virtually the same.

Observe also that, as one can expect, the resonances be-

come broader and decrease in intensity as d gets larger.

Finally, Fig. 9 depicts a“plot of thetransmission coeffi-

cient T as a function of the spacing between the screens

for the zero offset case (,s2= 0). Note that resonances

occur at spacings which approach multiples of A/2. This

49

phenomenon is not surprising since it has already been

observed in similar but nevertheless different situations.

These analogous cases are transmission through aperture-

cavity-aperture system [8] and transmission through vari-

ous slots in thick conducting screens [6], These resonances

decrease gradually in intensity, of course, with increasing

spacing between the screens.

V. DISCUSSION

A four-term moment solution for the general problem of

electromagnetic coupling between two half-space regions

separated by two narrow-slot perforated parallel conduct-

ing planes has been formulated. The solution reduces

subsequently to a one-term one for the special case of TE

excitation, where the coupling mechanism is described by

means of a simple equivalent circuit model. A measure-

ment of the coupling is given in terms of a transmission

coefficient which is defined as the power transmitted

through the slots to region c normalized to the power

incident upon slot S1.

The formulation is general and can be employed in a

variety of situations invoking coupling through slotted

screens. Our numerical examples are also general but, in a

sense, more closely related to the areas of microscopy and

microfabrication. It has been shown that for small dis-

tances between the screens, namely, out to about half the

first slot width, a scan of the second slot in the transverse

direction yields an approximated scan trace of this slot in

the power transmission coefficient.

Also, scanning further out along the transverse direction

results in a series of power transmission resonances which

occur at transverse shifts that approach multiples of A/2.

We would like to stress again that this behavior, which at

first sight seems to cast a severe drawback for scanning

ultramicroscope and photolithography, can be easily over-

come by utilizing a multiple-frequency source, thereby

significantly enhancing the desired zero offset resonance

while retaining the other resonances virtually the same.

Furthermore, it should be emphasized that for superresolu-

tion fluorescence near-field scanning microscopy, this

problem does not exist at all due to the inherently wide

spectral content of the fluorescence.

Finally, spacing the screen further apart also leads to a

multiple resonance pattern for the zero offset case. These

resonances also occur at resonance spacings which ap-

proach, as expected, multiples of X/2. This last phenome-

non is analogous to the phenomenon of transmission

through aperture-cavity-aperture system [8] and to that of

transmission through narrow slots in thick conducting

screens [6], where periodic resonance patterns have already

been observed.

APPENDIX

In this appendix, we will evaluate the various gener-

alized admittances appearing in (23) and (24).

First, we evaluate Y:: given by

y:;= -( A’fll, H;(kfll))l= -f”” M1l.H:(M1l)dx’.
—w

(Al)
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Here, the integration is along the x direction in slot S1 and

Ml ~ is given by

“’=-&$ ‘n””

(A2)

Also in (Al), H“(MII) is the magnetic field due to current

Mll radiating in region a with slot S1 closed. At observa-

tion point (x, z) in region a, this field is due to 2MII

radiating in free space. That is

.HJzl(ka~-) dx’j (A3)

where HJ2J is the Hankel function of the second kind of

zero order. In the slot S1 region, the Hankel function can

be replaced by its small argument approximation

HJ2)(ka/~) z= o
x,x’ =[-w~, w~]

2 kaylx – X’1
=1–j~log z +.. . (A4)

where log denotes natural logarithm and y =1.7810724.

Substituting (A4) into (A3), employing the identities

J

w

_w@+’=”
(A5)

J
w yklx – X’1

(–)

wkw

-w&lOg 2 ‘x’=”lOg 4 ‘A6)

and retaining only the largest real and imaginary terms,

one readily obtains

(A7)

Note that H“(ikf,, ) is constant in the slot S, region.

Finally, we subst~&te (A7) for H~(Mll) in

readily arrive at

kU~2 ku7r

()

ykowl
y;; . — - log ~ .

27. – J qa

Next, we evaluate Y~l given by

(Al) ‘and

(A8)

y:= -{~H, W“(~II))l= - /“’~H”H:(%) dx’
– w

(A9)

where the integration is along the x direction in slot SI

and Mll is given by (A2). Also in (A9), H ~(MIJ is the

magnetic field due to the current Mll radiating in region b

with both slots S1 and S2 closed. At observation point

(x, z) in region b, this field is the field due to 2MII and its

2d-spaced images. That is

(.+&) kb~(~–2nd)2+(x – X’)*) d-x’. (A1O)

In the slot S1 region, the following approximations for the

Hankel function are considered. For n = O, HJ2) is re-

placed by its small argument approximation

~~2)(k,~~) ;=.O= [- ‘, WI]

2 kbylx – x’I
=1–j–log z +. . . . (All)

T

For n2 > (10wl/d)2, we have (2nd)2 >> lx – X’12 and thus

we can set

(
H~2) ~b/(Z –2nd)2+(x ‘X’)2) :;:= [-wl, w1]

= HJ2J( 12kbndl). (A12)

Substituting (All) and (A12) into (A1O) and employing

identities (A5) and (A6), we obtain

.Hj2)(k~~(2nd)2+ (X – X’)2 ) dx’

- ~ ~ H$J(2k,nd)j in S1 (A13)
~b n= N1+l

where NI is the largest integer n satisfying n 2< (10 w/d) 2,

with w being max ( Wl, W2).

Finally, we substitute (A13) for H~(M1l) in (A9) and

readily arrive at

(kbl(2~d)2+(x-x’)2)dx’dx
kbr2 w

+— ~ H$J(2k,nd). (A14)
~b n= Nl+l

We now proceed to evaluate Y# given by

Y:= (Mll, H:(M21))1 =jw’ M11.H:(M21) dx’ (A15)
—WI

where the integration is along the x direction in slot Sl,

and Mll is given by (A2). Also in (A15) H b(M21) is the
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magnetic field due to the current

~21= I* in S2 (AK)

radiating in region b with both slots SI and S2 closed. At

observation point (x, z) in region b, this field is the field

due to 2M21 and its 2d-spaced images. That is,

(.H~2) k,~[z – (2n –1) d]z+ (X – x’)’ ) dx’~. (A17)

In the slot S1 region, the following approximation for the

Hankel function is considered. For (2n – 1)2 > (10 w2/d)2,

we set

H$)[k,,/[z -(2n-l)d]2+ (x-x’)’) F:_wl,w,l

x’=[s2-w~, s2+w2]

==H$)(kh~[(2n –l)d]2+ s;). (A18)

Substituting (A18) into (A17) and employing (A5), we find

(~.H;2) kb [z–(2n– l)d]2+(x–x’)2)dx’~

in S1 (A19)

where Nz is the largest integer n satisfying (2n – 1) 2<

(10 w,/d)2. Finally, we substitute (A19) for H$(M21) in

(A15) and readily arrive at

(JH~2) k,, [(2n–l) d]z+(x–x’)2j dx’dx

(A20)

Furthermore, thanks to reciprocity,

Y} = Y;;. (A21)

51

The remaining elements Y~l and Y;; can be evaluated in a

way analogous to that used to evaluate Yf~ and Y;:,

respectively. The result is

(.H~2) k~~(2rrd)2+ (X – X’)’ ) dx’dx

kb~ 2 cc
+— ~ Hf2)(2k,nd)

~b n= Nl+l

(A22)

(A23)

ACKNOWLEDGMENT

The author is pleased to acknowledge helpful discus-

sions with Prof. A. Lewis and E. Betzig of Cornell Univer-

sity<

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[x]

[9]

[10]

[11]

[12]

[13]

REFERENCES

C M. Butler, Y. Rahmat-Samli, and R. Mittra, “Electromagnetic

penetration through apertures m conducting surfaces,” IEEE Tram.
Ancennus Propugut., vol. AP-26, pp. 82-93, Jan. 1978,

E. A. Ash and G. Nichols, “Super-resolution aperture scanning
microscope,” Nature, vol. 237, pp. 510-512, June 1972.

A. Lewis et al., “Development of a 500 angstrom spatial resolution
light microscope,” Ultrarrmroscopy, vol. 13, no. 3, pp. 227–232,
1984.
D. T. Auckland and R. F. Harrmgton, “Electromagnetic transmis-
sion through a filled slit m a conducting plane of finite thickness,
TE case,” lEEE Ttmns, Mlcrowace Theory Tech., vol. MTT-26. pp.

499-505, July 1978,
D. T. Auckland and R. F. Barrington, “A nonmodal formulation

for electromagnetic transmission through a filled slot of arbltra~
cross section in a thick conducting screen,” IEEE Tram. MKFo-
Mure Theo~P Tech,, vol. MTT-28, pp 548–555, June 1980.

R. F. Barrington and D T. Auckland, “Electromagnetic transmis-

sion through narrow slots in thick conducting screen>,” IEEE

TrL{tLs. Atjtennus Propugut., vol. AP-28, pp. 616-622, Sept. 1980

C’. Cha and R. F. Barrington, “Electromagnetic transmission

through a rotationally symmetric hole in a thick screen,” Rep.
TR-81-2, Dept. Electrical and Computer Engineering, Syracuse
University, June 1981
Y, Lm’iatan, R, F. Barrington, and J. R. Mautz, “ Elecromagnctlc
transmmsion through apertures in a cavity m a thick conductor,”
lEI;E Trom. A ?lrennus Przpagat., vol AP-30. pp 1153-1165, Nov.
19X2,
R. F. Barrington, Time-fJarwtonic Electromagnetic Fields. New

York: McGraw-Hill, 1961.
R, F. Barrington, Fie[cl Computut{on I>y Moment Methods. New

York: M~cmillan, 1968
R F. Harringtnn and J. R Mautz, CGAgenersslized network formu-
lation for aperture problems,” IEEE Trans. A ntennus Propugut.,
VI)] AP-24. pp 870–873. Nov. 1976.
C M. Butler and D. R. Walton, “General analysis of narrow strips
and slot>,” IEEE T,um. Atztennus Propagut., vol AP-28, pp. 42-48,
Jan. 19X0.
Y. Lcwatan, “Study of near-zone fields of a small aperture,” .J.
,ily~i f’/1},\ , VOI 60, pp. 1577–1583, Sept. 1986.



52

Yehuda Leviatan
Jerusalem, Israel,

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36> NO. 1, JANUARY 1988

(S’81-M82) was born in
on September 19, 1951. He

received the B. SC. and M~Sc. degrees in electrical

engineering from the Technion-IsraeI Institute

of Technology, Haifa, Israel, in 1977 and 1979,
respectively, and the Ph.D. degree in electrical

engineering from Syracuse University, Syracuse,

NY, in 1982.

He held a Teaching Assistantship during his
graduate work from 1977 to 1979 at the Tech-

nion, a Research Assistantship during his grad-
uate work from 1979 to 1981 at Syracuse University, and a Postdoctoral
Research position at Syracuse U&ersity during ~he summer of 1982.
From 1980 to 1982 he was also engaged as a part-time Research Engineer

at the Syracuse Research Corporation. During the 1982/83 academic
year he was with the Faculty of the Electrical and Computer Engineering

Department at Syracuse University as an Assistant Professor. He has

provided consulting services to the Syracuse Research Corporation, IBM
(Endicott Laboratory), and to Adaptive Technology, Inc. In October

1983 he joined the Department of Electrical Engineering at the Technion,

where at present he is a Senior Lecturer. During the summer of 1985 he

was a Visiting Assistant Professor with the School of Applied and

Engineering Physics, Cornell University.

Dr. Leviatan’s research interests are in the areas of mathematical and

numerical methods applied to antennas, transmission lines, and wave-

guides, scattering and transmission through apertures, and near fields of
radiating systems. He has published several journaf papers on electromag-

netic and presented others at international symposia. A paper he
coauthored won the third best award at the 1983 IEEE International
EMC Symposium. He is a Fellow of the B. De Rothschild Foundation for

the Advancement of Science in Israel Inc., and a member of Commission
E of the International Union of Radio Science.


